Author:
Fainberg H. P.,Sharkey D.,Sebert S.,Wilson V.,Pope M.,Budge H.,Symonds M. E.
Abstract
Reduced maternal food intake between early-to-mid gestation results in tissue-specific adaptations in the offspring following juvenile-onset obesity that are indicative of insulin resistance. The aim of the present study was to establish the extent to which renal ectopic lipid accumulation, as opposed to other markers of renal stress, such as iron deposition and apoptosis, is enhanced in obese offspring born to mothers nutrient restricted (NR) throughout early fetal kidney development. Pregnant sheep were fed either 100% (control) or NR (i.e. fed 50% of their total metabolisable energy requirement from 30–80 days gestation and 100% at all other times). At weaning, offspring were made obese and, at approximately 1 year, kidneys were sampled. Triglyceride content, HIF-1α gene expression and the protein abundance of the outer-membrane transporter voltage-dependent anion-selective channel protein (VDAC)-I on the kidney cortex were increased in obese offspring born to NR mothers compared with those born to controls, which exhibited increased iron accumulation within the tubular epithelial cells and increased gene expression of the death receptor Fas. In conclusion, suboptimal maternal nutrition coincident with early fetal kidney development results in enhanced renal lipid deposition following juvenile obesity and could accelerate the onset of the adverse metabolic, rather than cardiovascular, symptoms accompanying the metabolic syndrome.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献