On the Flat-Band Potential of n-Type Cadmium Telluride in Alkaline Selenide, Polyselenide Electrolytes

Author:

Lyons LE,Young TL

Abstract

The flat-band potential Efb of n-CdTe in alkaline K2Se solution was determined by the Mott-Schottky technique as a function of properties of the crystal and electrolyte. The experimental value, c.- 2.0 V v. s.c.e., is more negative than the value calculated by assuming the absence of localized surface charge, -0.35 V v. s.c.e. For a given electrolyte, Epb depended on the crystal orientation, and became more negative in the order (111), (110), (111). These results are consistent with specific adsorption of anionic selenide species on surface cadmium atoms. For a freshly prepared CdTe electrode, Efb depended on the selenide ion concentration in a Nernstian manner, consistent with sub-monolayer adsorption of HSe-. In contrast, when electrodes had been exposed to selenide electrolytes for several days, Efb was less dependent on the selenide ion concentration, in some cases being constant over four orders of magnitude of [Se2-]. Such results were consistent either with saturation of the surface with adsorbed ions, or with pinning. As the electrolyte was oxidized, Ub increased linearly with Eredox, reached a maximum value at -0.81 V v. s.c.e., and then decreased, so that neither the ideal model nor the Fermi level pinning model applied. Models which assumed adsorption only of HSe- were inconsistent with the observed behaviour, but the results were explained quantitatively by a model which assumed the competitive adsorption of HSe- and Se on the semiconductor surface. Such a model was consistent also with the independence of Efb and the total selenide concentration observed in some experiments. .The largest built-in potential observed was 1.23 V. An improved method of preparing CdTe electrodes is described.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3