Chilling Temperatures and the Xanthophyll Cycle. A Comparison of Warm-Grown and Overwintering Spinach

Author:

Adams WW Iii,Hoehn A,Demmig-Adams B

Abstract

Photoprotective energy dissipation activity, that was largely associated with the de-epoxidation of the xanthophyll cycle, was examined in spinach leaves grown outside during the winter versus leaves that had developed at moderate temperatures in a glasshouse. On a leaf area basis the rates of photosynthesis were higher in leaves from the field at all temperatures examined, but were similar in both sets of leaves on a chlorophyll basis. The rate at which energy dissipation activity increased upon sudden exposure to high light was similar for the warm-grown leaves and those growing outside. This rate was futhermore similar to that of the rate of antheraxanthin and zeaxanthin formation, and was similar throughout the winter as long as the pre-dawn level of photosystem II (PSII) efficiency was at a normal high level. Whereas energy dissipation activity developed more rapidly at higher temperatures, the final extent of energy dissipation activity was greater at lower temperatures, where the rate of energy utilisation through photosynthetic electron transport was much lower. On colder days leaves collected pre-dawn from plants growing outside exhibited sustained decreases in PSII efficiency, which were associated with sustained decreases in both maximal and minimal levels of fluorescence. Such characteristics suggest that the leaves exposed to high light on colder days during the winter exhibited sustained energy dissipation activity that remained engaged throughout the night. It is likely that the xanthophyll cycle was involved in this response, as the sustained high levels of energy dissipation activity were found to be associated with sustained high levels, and thus the retention of, zeaxanthin and antheraxanthin overnight.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3