Simulating the Formation of Secondary Organic Aerosol from the Photooxidation of Toluene

Author:

Johnson David,Jenkin Michael E.,Wirtz Klaus,Martin-Reviejo Montserrat

Abstract

Environmental Context. Atmospheric particulate material can affect climate by absorbing and scattering solar radiation and by altering the properties of clouds. They are also implicated as a health risk. Secondary organic aerosol (SOA) material makes an important contribution to this particulate burden. SOA material results from the transfer of gas-phase species into a particle state after the formation of products from the reaction of atmospheric volatile organic compounds (VOCs) with oxygen. SOA from the oxidation of aromatic hydrocarbons, such as toluene, a gasoline fuel component, is important in the polluted urban environment and yet formation mechanisms are not well understood. Abstract. The formation and composition of secondary organic aerosol (SOA) from the gas-phase photooxidation of toluene has been simulated using the Master Chemical Mechanism version 3.1 (MCM v3.1) coupled to a representation of the transfer of organic material from the gas phase to a particle phase. The mechanism was tested against data from a series of toluene photooxidation experiments performed at the European Photoreactor (EUPHORE) outdoor smog chamber in Valencia, Spain. Simulated aerosol mass concentrations compared reasonably well with the measured SOA data after absorptive partitioning coefficients were increased by a factor of between 20 and 80, although the simulated onset of SOA growth was delayed with respect to the experiments. A simplified representation of peroxyhemiacetal adduct formation, from the reaction of organic hydroperoxides with aldehydes in the condensed organic phase, was included in the mechanism and this reduced the required scaling of partitioning coefficients and reduced the time-lag in simulated SOA growth. These observations, and the dependence of SOA formation efficiency upon the initial NO concentration, strongly imply the significant occurrence of association reactions in the condensed organic phase and the important role of organic hydroperoxides in SOA formation. Aerosol data from photooxidation experiments of intermediate degradation products (butenedial, 4-oxo-pentenal, and ortho-cresol) were also simulated using the developed mechanism.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3