Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution

Author:

Rubinigg Michael,Stulen Ineke,Elzenga J. Theo M.,Colmer Timothy D.

Abstract

Roots of rice (Oryza sativa L.) grown in stagnant de-oxygenated solution contain a 'tight' barrier to radial oxygen loss (ROL) in basal zones, whereas roots of plants grown in aerated solution do not. It is generally accepted that the barrier to ROL involves anatomical modifications in the apoplast of cell layers exterior to the aerenchyma. A possible drawback of this adaptation is a reduced capacity for nutrient uptake. Whether or not induction of a barrier to ROL influences the capacity of adventitious roots of rice to take up NO3– was determined in the present study, using NO3–-selective microelectrodes. When transferred into O2-free root medium, ROL from positions at 30–50 mm behind the tip of adventitious roots of plants raised in stagnant solution was only 4–6% of the rate from roots of plants raised in aerated solution, indicating the barrier to ROL was induced by growth in stagnant solution. For plants transferred into aerobic nutrient solution containing 0.1 mM NO3–, net NO3– uptake by these root zones, with or without a barrier to ROL, was the same. It is concluded that induction of a barrier to ROL had no effect on the capacity of adventitious roots of rice to take up NO3– from aerobic solution.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3