Expression and localisation of epidermal growth factor receptors and their ligands in the lower genital tract of cycling cows

Author:

Saǧsöz HakanORCID,Liman Narin,Güney Saruhan Berna,Akbalık Mehmet E.,Ketani Muzaffer A.,Topaloǧlu Uǧur

Abstract

The epidermal growth factor receptor (ErbB) family and its ligands are essential for the regulation of multiple cellular processes required for mammalian reproduction. The objectives of this study were to investigate the expression and localisation of ErbB subtypes (ErbB1–4) and selected ligands, namely epidermal growth factor (EGF), amphiregulin (AREG) and neuregulin (NRG), in the cervix and vagina of cycling cows and to determine possible steroid hormone-dependence of their expression using immunohistochemistry. All four ErbBs and EGF, AREG and NRG proteins were found to be localised in the nucleus and cytoplasm of different cells in the cervix and vagina, and their expression differed during the oestrous cycle. During the follicular phase, in both the cervix and vagina, ErbB1, ErbB2, ErbB3, ErbB4 and EGF expression was higher in the luminal epithelium (LE) than in stromal and smooth muscle (SM) cells (P<0.05). During the luteal phase, the expression of ErbB1, ErbB3 and EGF in the LE was significantly different from that in stromal and SM cells in the cervix, whereas the expression of EGF and AREG differed in the vagina compared to the cervix (P<0.05). Throughout the oestrous cycle, in both the cervix and vagina, although ErbB2/human epidermal growth factor receptor 2 expression in the LE and SM cells was significantly higher than in the stromal cells (P<0.05), NRG expression was similar in the LE, stromal and SM cells (P>0.05). Overall, these results suggest that all four ErbBs and the EGF, AREG and NRG proteins may collectively contribute to several cellular processes in the bovine cervix and vagina during the oestrous cycle.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3