Bone mineral density in the tail-bones of cattle: effect of dietary phosphorus status, liveweight, age and physiological status

Author:

Coates D. B.,Dixon R. M.,Murray R. M.,Mayer R. J.,Miller C. P.

Abstract

In three grazing experiments in the seasonally dry tropics of Australia, growing steers (Experiment 1), first-calf cows (Experiment 2) and mature breeder cows (Experiment 3), ingested diets for 12–17 months, which were either adequate or severely deficient in phosphorus (P) (Padeq and Pdefic, respectively). Bone mineral density (BMD) at the proximal end of the ninth coccygeal vertebra (Cy9) was measured at intervals using single photon absorptiometry (SPA). Liveweight (LW) and plasma inorganic phosphorus (PIP) concentrations were monitored at intervals and rib-bone cortical bone thickness (CBT) of biopsy samples was measured at the end of Experiments 1 and 3. Measurements of LW change, PIP concentrations and CBT confirmed that diet P intakes of cattle in the Padeq treatments were adequate whereas there was severe and chronic P deficiency in the Pdefic treatments. In Experiment 1 BMD in Padeq steers increased with LW and age from ~0.25–0.27 g/cc (8 months, 200 kg LW) to ~0.34 g/cc (32 months, 490 kg LW), whereas in Pdefic steers BMD decreased progressively to ~0.23–0.24 g/cc. Although BMD decreased in the Pdefic steers bone volume of Cy9 (calculated from tail-bone thickness) increased, and some net bone deposition in the Cy9 continued. Rib-bone CBT and tail-bone BMD at the end of Experiment 1 were closely correlated (r = 0.93). In Experiment 2 BMD was initially 0.33 g/cc (~25 months, 400 kg LW) and did not change through pregnancy and lactation in Padeq cows. However, in the Pdefic cows there was a gradual decline in BMD to ~0.25 g/cc. There was no change in dimensions of the Cy9 so the decreases in BMD involved net demineralisation of bone. In Experiment 3 BMD was less responsive to P deficiency than in Experiments 1 and 2. Only after ~11 months was BMD reduced (P < 0.05) in the Pdefic cows, and then only by 15%. In contrast, rib-bone CBT decreased by 30% due to P deficiency, and BMD was poorly correlated with CBT (r = 0.4). The effects of animal weight, age and maturity on tailbone BMD of P-adequate animals, and the different responses to P deficiency observed in young growing steers, first-calf cows and mature breeders are discussed in relation to the use of SPA measured tail-bone BMD to diagnose P deficiency in grazing cattle.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3