Author:
Abiven David,Boudesocque Stéphanie,Guillon Emmanuel,Couderchet Michel,Dumonceau Jacques,Aplincourt Michel
Abstract
Environmental Context.Agrochemicals have contributed greatly to modern agriculture, allowing better yields and lower costs. However, their extensive use has led to frequent contamination of underground and surface water. A better knowledge of the fate of pesticides from the sprayer to the water that would take into account the diversity of the physical and chemical properties of the various molecules and environmental conditions should help in the challenge of protecting and restoring natural water quality.
Abstract.The intensive use of terbumeton (N-(1,1-dimethyl)-N′-ethyl-6-methoxy-1,3,5-triazine-2,4-diamine) has resulted in its widespread presence, together with its main metabolites, in surface- and groundwater. To estimate the fate of these compounds, their adsorption and desorption properties were studied in vineyard soils. The values of the organic carbon normalized adsorption coefficient (KOC) for terbumeton (34.6 and 39.2 L g−1) were significantly higher than those of its metabolites (between 6.8 and 21.1 L g−1). Terbumeton exhibited a higher adsorption capacity and a lower desorption potential as compared with the metabolites. An important hysteresis was observed in all cases. The Freundlich isotherms exhibited a linear shape, which was interpreted as non-specific interaction. The influence of copper(II), a ubiquitous metal cation in vineyard soils, on pesticide sorption was also studied. Copper significantly decreased the amount of adsorbed terbumeton when present in a high concentration (2 ×10−4 M).
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献