Applicability of the photogrammetry technique to determine the volume and the bulk density of small soil aggregates

Author:

Moret-Fernández D.,Latorre B.,Peña C.,González-Cebollada C.,López M. V.

Abstract

Aggregate density (ρ) is defined as the relationship between the mass and the volume occupied by an aggregate. Previous studies have characterised ρ on large to medium-sized soil aggregates (>4 mm diameter); however, little information is available for smaller aggregates (<4 mm). The objective of this study was to test the viability of the photogrammetry (PHM) technique to determine the volume and subsequent ρ of small soil aggregates (1–8 mm diameter). The method uses a standard digital camera that photographs a rotating aggregate and reconstructs its three-dimensional surface and the corresponding volume. To validate the method, the volume estimated with PHM on rough stones of different sizes (1–16 mm diameter) was compared with the corresponding volume measured by the Archimedes’ principle. The method was tested on soil aggregates 1–8 mm in diameter, collected from two sites under conventional and conservation tillage treatments. The strong correlation (R2 > 0.99, P < 0.0001) between the volumes estimated on rough stones with the PHM and Archimedes methods demonstrates that this technique can be satisfactorily used to estimate the volume and, consequently, the ρ of small soil aggregates. The results showed an increase in ρ with decreasing aggregate size. A general trend of increasing ρ with the degree of soil disturbance by tillage was also observed.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3