Author:
Hicks Andy S.,Jarvis Matt G.,David Bruno O.,Waters Jonathan M.,Norman Marc D.,Closs Gerard P.
Abstract
Understanding migratory life histories is critical for the effective management and conservation of migratory species. However, amphidromous migrations (fish hatch in streams, immediately migrate to the sea for a feeding period and return to fresh water as juveniles) remain understudied owing to the difficulties of tracking tiny larval fish. Despite this, it has widely been assumed that amphidromous fish have open, resilient populations, with marine-rearing larvae dispersing widely during their pelagic phase. In the present study we tested the hypothesis that when an alternative freshwater pelagic habitat is available, non-diadromous recruitment will be the dominant process in sustaining amphidromous fish populations, with implications for their connectivity and resilience. Otolith microchemical analyses of five species (three Galaxias (Galaxiidae), two Gobiomorphus (Eleotridae)) from paired systems on the South Island of New Zealand indicated that when a suitable freshwater pelagic habitat existed downstream, non-diadromous recruitment was the primary population-sustaining process, typically contributing >90% of recruits. In addition, not all species recruited from all lakes, indicating the importance of the largely unstudied role of species-specific amphidromous larval requirements. The results of the present study emphasise the need to better understand the dynamics of individual populations of amphidromous fish, and highlight the importance of understanding species-specific early life history requirements to fully understand their distributions and management needs.
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献