Dicyandiamide increased ammonia volatilisation and decreased carbon dioxide emission from calcareous soil during wheat–maize rotation on the Loess Plateau

Author:

Raza SajjadORCID,Li Xuesong,Miao Na,Ahmed Muneer,Liu Zhanjun,Zhou Jianbin

Abstract

Nitrification inhibitors (NIs) have been found to retard the nitrification process, reduce N losses and increase nitrogen use efficiency; however, their effect on carbon dioxide (CO2) emission from calcareous soil has rarely been reported. A 2-year field experiment was conducted to study whether nitrification inhibition by dicyandiamide (DCD) has any effect on CO2 release from calcareous soil. The experiment comprised five treatments: a control (0 kg N ha–1) and two levels of N fertiliser applied on wheat (160 and 220 kg N ha–1) and maize (180 and 280 kg N ha–1) crops, with and without DCD. Compared with the control, a decrease in soil pH (mean 0.21 units in N fertiliser treatments without DCD and 0.11 units with DCD) and increases in cumulative CO2 emission (mean 17% and 23% in wheat and maize respectively) and cumulative ammonia (NH3) volatilisation (mean 28% and 446% in wheat and maize respectively) was recorded under all N fertilised treatments (with and without DCD). The application of DCD with N fertiliser retarded the nitrification process, as indicated by a higher NH4+-N and lower NO3–-N content, as well as a relatively higher soil pH, compared with application of N fertiliser without DCD. In addition, DCD application significantly reduced CO2 emission in both wheat (10–20%) and maize (13–14%) crops compared with crops grown with N fertiliser without DCD. However, the losses from NH3 volatilisation increased when DCD was applied at both N fertiliser levels in both wheat (38–41%) and maize (24–36%) crops. Inhibition of nitrification by DCD was more effective during the wheat than during maize season. Controlling nitrification using DCD is an effective approach to minimise CO2 emission from calcareous soils on the Loess Plateau; however, DCD application increases in NH3 volatilisation.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3