Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use

Author:

Zaman-Allah Mainassara,Jenkinson David M.,Vadez Vincent

Abstract

Chickpea (Cicer arietinum L.) is often exposed to terminal drought, and deep, profuse rooting has been proposed as the main breeding target to improve terminal drought tolerance. This work tested whether plant water use at the vegetative stage and under non-limited water conditions could relate to the degree of sensitivity of chickpea to terminal drought. Transpiration response to a range of vapour pressure deficits under controlled and outdoor conditions was measured with canopy conductance using gravimetric measurements and thermal imagery in eight chickpea genotypes with comparable phenology and contrasting seed yield under terminal drought in the field. Additionally, the response of plant growth and transpiration to progressive soil moisture depletion was assayed in the same genotypes. Drought-tolerant genotypes had a lower canopy conductance under fully irrigated conditions at the vegetative stage; this trend was reversed at the early pod filling stage. While two sensitive genotypes had high early growth vigour and leaf development, there was a trend of lower growth in tolerant genotypes under progressive soil drying than in sensitive ones. Tolerant genotypes also exhibited a decline of transpiration in wetter soil compared to sensitive genotypes. Canopy conductance could be proxied by measuring leaf temperature with an infrared camera, although the relationship lost sensitivity at the pod filling stage. This work suggests that some traits contribute to water saving when water does not limit plant growth and development in drought-tolerant chickpea. It is hypothesised that this water would be available for the reproduction and grain filling stages.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3