Author:
Alzohairy Ahmed M.,Gyulai Gábor,Ramadan Mohamed F.,Edris Sherif,Sabir Jamal S. M.,Jansen Robert K.,Eissa Hala F.,Bahieldin Ahmed
Abstract
Retrotransposons (RTs) are major components of most eukaryotic genomes. They are ubiquitous, dispersed throughout the genome, and their abundance correlates with genome size. Their copy-and-paste lifestyle in the genome consists of three molecular steps involving transcription of an RNA copy from the genomic RT, followed by reverse transcription to generate cDNA, and finally, reintegration into a new location in the genome. This process leads to new genomic insertions without excision of the original element. The target sites of insertions are relatively random and independent for different taxa; however, some elements cluster together in ‘repeat seas’ or have a tendency to cluster around the centromeres and telomeres. The structure and copy number of retrotransposon families are strongly influenced by the evolutionary history of the host genome. Molecular markers play an essential role in all aspects of genetics and genomics, and RTs represent a powerful tool compared with other molecular and morphological markers. All features of integration activity, persistence, dispersion, conserved structure and sequence motifs, and high copy number suggest that RTs are appropriate genomic features for building molecular marker systems. To detect polymorphisms for RTs, marker systems generally rely on the amplification of sequences between the ends of the RT, such as (long-terminal repeat)-retrotransposons and the flanking genomic DNA. Here, we review the utility of some commonly used PCR retrotransposon-based molecular markers, including inter-primer binding sequence (IPBS), sequence-specific amplified polymorphism (SSAP), retrotransposon-based insertion polymorphism (RBIP), inter retrotransposon amplified polymorphism (IRAP), and retrotransposon-microsatellite amplified polymorphism (REMAP).
Subject
Plant Science,Agronomy and Crop Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献