Photodegradation of three benzotriazoles induced by four FeIII–carboxylate complexes in water under ultraviolet irradiation

Author:

Liu You-Sheng,Ying Guang-Guo,Shareef Ali,Kookana Rai S.

Abstract

Environmental context Benzotriazoles are chemicals widely used to inhibit corrosion in various industrial processes and in household products. They persist in aquatic environments, even under UV irradiation, and thus there is a need to improve their photolytic degradation to minimise the environmental exposure risks. We investigated the effects of four iron–carboxylate complexes on the UV photodegradation of three benzotriazoles in aqueous solutions and show that they significantly increase the degradation rates of benzotriazoles. Abstract The effects of FeIII–carboxylate complexes on the photodegradation of three benzotriazoles (BTs), i.e. benzotriazole (BT), 5-methylbenzotriazole (5-TTri) and 5-chlorobenzotriazole (CBT) in aqueous solutions were investigated under exposure to UV irradiation at 254nm in the presence of FeIII and four carboxylate ions (oxalate, tartrate, succinate and citrate). The results showed that the presence of FeIII–carboxylate complexes significantly enhanced the photodegradation rates of all three selected BTs. The photodegradation of BT, 5-TTri and CBT followed first-order reaction kinetics with half-lives ranging from 0.57 to 3.98h for BT, 6.08 to 8.25h for 5-TTri and 2.63 to 5.50h for CBT in the four systems of the FeIII–carboxylate complexes. In comparison, the half-lives ranged between 3.40 and 4.81h for BT, 6.42 and 11.55h for 5-TTri and 4.13 and 6.79h for CBT in pure aqueous solution and in the presence of FeIII or carboxylate. The degradation rates of these BTs were dependent on the pH values, type of carboxylate and FeIII/carboxylate ratios. Both BT and CBT showed the highest photodegradation rates with the shortest respective half-lives of 0.57 and 2.63h at the initial FeIII/oxalate ratio of 10/200µmolL–1 in aqueous solutions at pH 3, whereas 5-TTri had the highest photodegradation rate with the shortest half life of 6.08h at the initial FeIII/succinate ratio of 10/10µmolL–1.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3