Dendrimers as Scaffolds for Reversible Addition Fragmentation Chain Transfer (RAFT) Agents: a Route to Star-Shaped Block Copolymers

Author:

Hao Xiaojuan,Malmström Eva,Davis Thomas P.,Stenzel Martina H.,Barner-Kowollik Christopher

Abstract

Star-shaped block copolymers of styrene and n-butyl acrylate having three, six, and twelve pendent arms were successfully synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Dendritic cores (based on 1,1,1-trimethylolpropane) of generation 0, 1, and 2 have been functionalized with 3-benzylsulfanylthiocarbonylsulfanylpropionic ester groups and have subsequently been employed to mediate the polymerization of styrene and n-butyl acrylate to generate macro-star-RAFT agents as starting materials for chain extension. The chain extension of the macro-star-RAFT agents with either styrene or n-butyl acrylate by bulk free radical polymerization at 60°C gives narrowly distributed polymer (final polydispersities close to 1.2) increasing linearly in molecular weight with increasing monomer-to-polymer conversion. However, with an increasing number of arms (i.e., when going from three- to twelve-armed star polymers), the chain extension becomes significantly less efficient. The molecular weight of the generated block copolymers was assessed using 1H NMR spectroscopy as well as size exclusion chromatography calibrated with linear polystyrene standards. The hydrodynamic radius, Rh, of the star block copolymers as well as the precursor star polymers was determined in tetrahydrofuran by dynamic light scattering (90°) at 25°C. Interestingly, the observed Rh–Mn relationships indicate a stronger dependence of Rh on Mn for poly(butyl acrylate) stars than for the corresponding styrene polymers. Rh increases significantly when the macro-star-RAFT agent is chain extended with either styrene or n-butyl acrylate.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3