Apparent absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) in frogs in Malaita Province, Solomon Islands

Author:

Alabai Maasafi,Esau Tommy,Kekeubata Esau,Esau Dorothy,Waneagea Jackson,Lobotalau Lamanai'a,Alick James,Silas John,Solome Ledison,Waneagea Jimson,Mousisi Kwai'ikwala,Cutajar Timothy P.,Portway Christopher D.,MacLaren David J.,Rowley Jodi J. L.ORCID

Abstract

A major driver of global biodiversity loss is disease. One of the most devastating wildlife diseases known is chytridiomycosis, which is caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis, and is implicated in population declines in over 500 frog species. Thought to originate in Asia, B. dendrobatidis now has a global distribution, likely due to human movement and trade. The pathogen has yet to be detected in Melanesia, but there have been few surveys for B. dendrobatidis in the region, and none in the Solomon Islands archipelago, a biogeographic region with a unique and culturally important frog fauna. We swabbed 200 frogs of eight species in three genera in lowland and highland sites in East Kwaio on the island of Malaita in the Solomon Islands. All frogs tested negative for the pathogen but it is possible that the pathogen is present despite non-detection, so further surveys for the pathogen are needed throughout the country. Despite this, it is safest to take a precautionary approach and assume that B. dendrobatidis has not yet been introduced to the Solomon Islands, and that naïve native amphibian populations may be at risk of decline if the pathogen is introduced. Protocols are needed to prevent the accidental import of infected frogs via tourism or in logging or mining equipment. Monitoring of frog populations near areas of high risk such as ports is also recommended. The frogs of the Solomon Islands archipelago are biologically unique and culturally significant, and protecting them from the potentially devastating impacts of B. dendrobatidis is vital.

Publisher

CSIRO Publishing

Subject

Nature and Landscape Conservation,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3