Thermal infrared emission - transmission measurements in flames from a cylindrical forest fuel burner

Author:

Dupuy Jean-Luc,Vachet Philippe,Maréchal Joël,Meléndez Juan,de Castro Antonio J.

Abstract

We describe emission–transmission measurements performed at different heights in a flame from a cylindrical forest fuel burner, using a camera operating in the thermal infrared (7.5–13 µm). The forest fuel burner was made of a cylindrical wire mesh basket filled with a forest fuel (Pinus pinaster needles), which was ignited at the base of the basket. Three diameters of basket were used (20, 28 and 40 cm). Heat release rates, as calculated from weighing of the basket and heat of combustion of the fuel, ranged between 50 and 170 kW and flame heights ranged between 1 and 2 m. The emission–transmission device allows the determination of the transmittance of the flame and of a radiometric temperature. We show that radiation was dominated by soot in the spectral range of the camera, but that radiation from gaseous products of the combustion was not negligible. Using the Mie theory in its Rayleigh limit, we deduced some average volume fractions of soot from the measurements, which peaked at 6.8 × 10−6 in the persistent region of the flame. Then the total extinction coefficient and the total emissivity of the flame due to soot were calculated according to a standard method. Measured transmittance, soot volume fraction, total extinction coefficient and total emissivity were found to scale with the normalised height of measurement Z, defined as the ratio of the height of measurement to the height of the flame (0.25 < Z < 1.6).

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3