Paradoxical population resilience of a keystone predator to a toxic invasive species

Author:

Doody J. SeanORCID,Rhind David,Clulow Simon

Abstract

Abstract ContextThe invasive cane toad (Rhinella marina) has decimated populations of a keystone predator, the yellow-spotted monitor (Varanus panoptes), causing trophic cascades in Australian animal communities. Paradoxically, some V. panoptes populations coexist with toads. Demonstrating patterns in heterogeneous population-level impacts could reveal mechanisms that mediate individual effects, and provide managers with the ability to predict future impacts and assist in population recovery. AimsThe aim of the present study was to search for spatial patterns of population resilience of V. panoptes to invasive cane toads. MethodsPublished literature, unpublished data, reports and anecdotal information from trained herpetologists were used to test the emerging hypothesis that resilient predator populations are mainly coastal, whereas non-resilient populations are mostly inland. Key resultsPost-toad invasion data from 23 V. panoptes populations supported the idea that toad impacts on V. panoptes were heterogeneous; roughly half the populations could be designated as resilient (n=13) and half as non-resilient (n=10). Resilient populations had longer times since toad invasion than did non-resilient populations (39 versus 9 years respectively), supporting the idea that some recovery can occur. Non-resilient populations were exclusively inland (n=10), whereas resilient populations were split between inland (n=5) and coastal (n=8) populations. Resilient inland populations, however, were mainly confined to areas in which decades had passed since toad invasion. ConclusionsThe findings suggest that coastal V. panoptes populations fare much better than inland populations when it comes to surviving invading cane toads. ImplicationsUnambiguous recovery of monitor populations remains undemonstrated and will require long-term population monitoring before and after toad invasion.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3