Water relations and mineral nutrition of Triodia grasses on desert dunes and interdunes

Author:

Grigg Alasdair M.,Veneklaas Erik J.,Lambers Hans

Abstract

Desert dunes and interdunes provide habitat heterogeneity and profoundly influence the spatial and temporal distribution of water and nutrients throughout the landscape. These underlying physical processes shape the plant species composition and their ecophysiology. Spinifex grasses dominate the vegetation throughout much of Australia and are categorised into two groups; ‘soft’ species occur mostly in northern, subtropical to semiarid regions, whereas ‘hard’ species occur mostly throughout the dry centre and southern interior. This study examined the water and nutrient relations and leaf anatomy of dominant ‘soft’ and ‘hard’ spinifex in the Great Sandy Desert, where their distributions overlap. The ‘soft’ species, Triodia schinzii (Henrard) Lazarides, occurs only on sand dunes, whereas the ‘hard’ species, T. basedowii E.Pritz., is restricted to the flat interdunes. We proposed two hypotheses: 1) that the dune species, T. schinzii would display more favourable water status and 2) the interdune species, T. basedowii would display higher leaf nutrient concentrations. Triodia schinzii displayed significantly less negative leaf water potentials at predawn and at midday (–0.4 and –2.0 MPa, respectively) than T. basedowii (–0.9 and –3.0 MPa, respectively) throughout the middle of the dry season. Photosynthesis rates were also significantly higher in T. schinzii than T. basedowii in the wet season (140 v. 84 nmol g–1 s–1), but there were no significant differences between species in leaf conductance. Leaf δ13C composition confirmed anatomical observations that both species were C4 and supported the finding that T. schinzii displayed significantly greater photosynthetic water-use efficiency during the wet season than T. basedowii. In general, foliar nutrient concentrations were not significantly different between species; however, both species exhibited especially low leaf P and to a lesser extent N. We conclude that water is more readily available in the dune than the interdune as a result of greater soil depth and associated water storage capacity. These properties are considered the main factors influencing plant species distribution. Given the climatic and geographic distribution of these two Triodia species, it is suggested that sand dunes provide a mesic corridor for T. schinzii to extend its range from higher rainfall areas into the arid interior.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3