Synchronization of porcine oocyte meiosis using cycloheximide and its application to the study of regulation by cumulus cells

Author:

Ye J.,Flint A. P. F.,Campbell K. H. S.,Luck M. R.

Abstract

This paper describes the use of the protein synthesis inhibitor cycloheximide (CHX) to synchronize nuclear progression during meiotic maturation in porcine oocytes, and also the time-dependence of nuclear maturation on exposure of the oocyte to cumulus cells. Prior to culture, the majority of oocytes were at the germinal vesicle (GV) stage (95–100%), but distributed from GVI to GVIV (GVI 56.1 ± 9.1%, GVII 15.3 ± 1.4%, GVIII 21.5 ± 7.1%, GVIV 7.1 ± 3.5%). During culture of cumulus-enclosed oocytes (COCs) from 12 h to 48 h in a conventional culture system, all meiotic stages were represented at any time point examined, with 63.6 ± 4.2% of oocytes maturing to metaphase II (MII). Cycloheximide blocked the progression of nuclear development in a dose-dependent manner. Treatment for 12 h with CHX at 1–25 μg mL–1 resulted in 95–100% oocytes being arrested and synchronized at GVII. With >5 μg mL–1 CHX, all oocytes were arrested before germinal vesicle breakdown (GVBD) (mostly at GVIII) by 24 h. A 12 h preincubation with 5 μg mL–1 CHX followed by 24 h of further culture without CHX resulted in >80% of oocytes maturing to MII. The profile of nuclear progression during maturation revealed discrete peaks of occurrence of different meiotic stages, with GVBD at 6–12 h, metaphase I (MI) at 10–18�h and anaphase I/telophase I at 16–20 h. After 12 h preincubation with 5 μg mL–1 CHX, denuded oocytes (DOs) matured to MI as COCs. However, DOs matured to MII as normal when denuded at MI. In conclusion, CHX not only efficiently blocks and synchronizes the meiotic progression of porcine oocytes at a specific GV stage, but it also effectively synchronizes subsequent meiotic progression to MII, resulting in discrete peaks of occurrence of different meiotic stages. Using this technique, the study showed that cumulus cells are essential for oocytes to mature from MI to MII but exposure to cumulus cells must occur before MI.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3