Abstract
Reproductive techniques such as superovulation and in vitro fertilisation (IVF) have been widely used in generating genetically modified animals. The current gold standard for superovulation in mice is using coherent treatments of equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). An alternative method using inhibin antiserum (IAS) instead of eCG has been recently reported. Here, we evaluate different superovulation strategies in C57BL/6J and B6D2F1 mice. Firstly, we found that using 5-week-old C57BL/6J and 4-week-old B6D2F1 donors could achieve better superovulation outcomes. Then, we compared eCG–hCG, IAS–hCG and eCG–IAS–hCG with different dosages in both mouse strains. Significantly increased numbers of oocytes were obtained by using IAS–hCG and eCG–IAS–hCG methods. However, low fertilisation rates (36.3–38.8%) were observed when natural mating was applied. We then confirmed that IVF could dramatically ameliorate the fertilisation rates up to 89.1%. Finally, we performed CRISPR-Cas9 mediated genome editing targeting Scn11a and Kcnh1 loci, and successfully obtained mutant pups using eCG–hCG and IAS–hCG induced zygotes, which were fertilised by either natural mating or IVF. Our results showed that IAS is a promising superovulation reagent, and the efficiency of genome editing is unlikely to be affected by using IAS-induced zygotes.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献