Author:
Barbé F.,Chevaux E.,Castex M.,Elcoso G.,Bach A.
Abstract
Context
Selenium (Se) bioavailability is an important parameter to consider when supplementing trace minerals to optimise animal health and performance.
Aims
To assess the biological transfer of Se in milk and serum of three sources of organic Se in dairy cattle: two different pure selenomethionines (SM1, SM2) and Se-yeast (SY) containing selenomethionine, selenocysteine and other forms of organic Se.
Methods
Forty-five lactating Holstein dairy cows were randomly distributed in nine groups (three sources of organic Se supplemented at three doses: 0.1, 0.2 and 0.3 ppm organic Se in addition to 0.3 ppm of inorganic Se) and the Se concentrations in milk and serum were analysed at different times over 34 days of supplementation. Dry matter intake, milk yield, as well as milk fat and protein contents were recorded daily for each cow. Selenium bioavailability in milk was assessed as the ratio between amount of Se secreted in milk and amount of Se consumed.
Key results
The lowest Se dose (0.1 ppm), independent of source, did not allow detection a different pattern of transfer into milk and serum, suggesting that at this level, the Se supplied was mainly used to cover the animal needs. Supplementing SY at 0.2 and 0.3 ppm resulted in the most consistent secretion of Se into milk, whereas SM2 was most effective at increasing serum Se concentrations.
Conclusions
At the supplementing doses of 0.2 and 0.3 ppm, SY elicits an increased transfer of Se into milk concentrations compared with SM1 and SM2, whereas SM2 induces the greatest increase in Se serum concentrations.
Implications
SY is more effective than SM1 and SM2 at increasing Se transfer into milk. Supplementation of SM2 induces a pattern of Se transfer into milk and serum that differs from the other Se sources suggesting a different metabolism of this particular Se source.
Subject
Animal Science and Zoology,Food Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献