Comparison of selenium bioavailability in milk and serum in dairy cows fed different sources of organic selenium

Author:

Barbé F.,Chevaux E.,Castex M.,Elcoso G.,Bach A.

Abstract

Context Selenium (Se) bioavailability is an important parameter to consider when supplementing trace minerals to optimise animal health and performance. Aims To assess the biological transfer of Se in milk and serum of three sources of organic Se in dairy cattle: two different pure selenomethionines (SM1, SM2) and Se-yeast (SY) containing selenomethionine, selenocysteine and other forms of organic Se. Methods Forty-five lactating Holstein dairy cows were randomly distributed in nine groups (three sources of organic Se supplemented at three doses: 0.1, 0.2 and 0.3 ppm organic Se in addition to 0.3 ppm of inorganic Se) and the Se concentrations in milk and serum were analysed at different times over 34 days of supplementation. Dry matter intake, milk yield, as well as milk fat and protein contents were recorded daily for each cow. Selenium bioavailability in milk was assessed as the ratio between amount of Se secreted in milk and amount of Se consumed. Key results The lowest Se dose (0.1 ppm), independent of source, did not allow detection a different pattern of transfer into milk and serum, suggesting that at this level, the Se supplied was mainly used to cover the animal needs. Supplementing SY at 0.2 and 0.3 ppm resulted in the most consistent secretion of Se into milk, whereas SM2 was most effective at increasing serum Se concentrations. Conclusions At the supplementing doses of 0.2 and 0.3 ppm, SY elicits an increased transfer of Se into milk concentrations compared with SM1 and SM2, whereas SM2 induces the greatest increase in Se serum concentrations. Implications SY is more effective than SM1 and SM2 at increasing Se transfer into milk. Supplementation of SM2 induces a pattern of Se transfer into milk and serum that differs from the other Se sources suggesting a different metabolism of this particular Se source.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3