High crop productivity with high water use in winter and summer on the Liverpool Plains, eastern Australia

Author:

Young R. R.,Derham P.-J.,Dunin F. X.,Bernardi A. L.,Harden S.

Abstract

We report exceptional productivity and associated water-use efficiency across seasons for commercial crops of rainfed spring wheat and grain sorghum growing on stored soil water in Vertosols on the Liverpool Plains, central-eastern Australia. Agreement between the independently measured terms of evapotranspiration (ET) and the soil water balance (in-crop rainfall + δsoil water) was achieved within acceptable uncertainty across almost all measurement intervals, to provide a reliable dataset for the analysis of growth and water-use relationships without the confounding influence of water outflow either overland or within the soil. Post-anthesis intrinsic transpiration efficiency (kc ) values of 4.7 and 7.2 Pa for wheat and sorghum, respectively, and grain yields of 8 and 7 t/ha from ET of 450 and 442 mm (1.8 and 1.6 g/m2.mm), clearly demonstrate the levels of productivity and water-use efficiency possible for well-managed crops within an intensive and productive response cropping sequence. The Vertosols in which the crops were grown enabled rapid and apparently unconstrained delivery of significant quantities of subsoil water (34% and 51% of total available) after anthesis, which enabled a doubling of pre-anthesis standing biomass and harvest indices of almost 50%. Durum wheat planted into only 0.30 m of moist soil and enduring lower than average seasonal rainfall, yielded less biomass and grain (2.3 t/ha) with lower water-use efficiency (0.95 g/m2.mm) but larger transpiration efficiency, probably due to reduced stomatal conductance. We argue that crop planting in response to stored soil water and management for high water-use efficiency to achieve high levels of average productivity of crop sequences over time can have a significant effect on both increased productivity and enhanced hydrological stability across alluvial landscapes.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3