Isotopic evidence for nitrogen exchange between autotrophic and heterotrophic tissues in variegated leaves

Author:

Abadie Cyril,Lamothe-Sibold Marlène,Gilard Françoise,Tcherkez Guillaume

Abstract

Many plant species or cultivars form variegated leaves in which blades are made of green and white sectors. On the one hand, there is little photosynthetic CO2 assimilation in white tissue simply because of the lack of functional chloroplasts and thus, leaf white tissue is heterotrophic and fed by photosynthates exported by leaf green tissue. On the other hand, it has been previously shown that the white tissue is enriched in nitrogenous compounds such as amino acids and polyamines, which can, in turn, be remobilised upon nitrogen deficiency. However, the origin of organic nitrogen in leaf white tissue, including the possible requirement for N-reduction in leaf green tissue before export to white tissue, has not been examined. Here, we took advantage of isotopic methods to investigate the source of nitrogen in the white tissue. A survey of natural isotope abundance (δ15N) and elemental composition (%N) in various variegated species shows no visible difference between white and green tissues, suggesting a common N source. However, there is a tendency for N-rich white tissue to be naturally 15N-enriched whereas in the model species Pelargonium × hortorum, white sectors are naturally 15N-depleted, indicating that changes in metabolic composition and/or N-partitioning may occur. Isotopic labelling with 15N-nitrate on illuminated leaf discs clearly shows that the white tissue assimilates little nitrogen and thus relies on nitrate reduction and metabolism in the green tissue. The N-sink represented by the white tissue is considerable, accounting for nearly 50% of total assimilated nitrate.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3