Author:
Liu Yaning,Jimenez Edwin,Hussaini M. Yousuff,Ökten Giray,Goodrick Scott
Abstract
Rothermel's wildland surface fire model is a popular model used in wildland fire management. The original model has a large number of parameters, making uncertainty quantification challenging. In this paper, we use variance-based global sensitivity analysis to reduce the number of model parameters, and apply randomised quasi-Monte Carlo methods to quantify parametric uncertainties for the reduced model. The Monte Carlo estimator used in these calculations is based on a control variate approach applied to the sensitivity derivative enhanced sampling. The chaparral fuel model, selected from Rothermel's 11 original fuel models, is studied as an example. We obtain numerical results that improve the crude Monte Carlo sampling by factors as high as three orders of magnitude.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献