Molecular and kinetic characterisation of sugarcane pyrophosphate: fructose-6-phosphate 1-phosphotransferase and its possible role in the sucrose accumulation phenotype

Author:

Groenewald Jan-Hendrik,Botha Frederik Coenraad

Abstract

The amount of pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) activity in sugarcane internodal tissue is inversely correlated with sucrose content. To help elucidate this apparent role of PFP in sucrose accumulation in sugarcane we have determined its molecular and kinetic properties. Sugarcane PFP was purified 285-fold to a final specific activity of 4.23 µmol min–1 mg–1 protein. It contained two polypeptides of 63.2 and 58.0 kDa respectively, at near equal amounts that cross-reacted with potato PFP-α and –β antiserum. In gel filtration analyses the native enzyme eluted in three peaks of 129, 245 and 511 kDa, corresponding to dimeric, tetrameric and octameric forms, respectively and fructose 2,6-bisphosphate (Fru 2,6-P2) influenced this aggregation state. Both the glycolytic (forward) and gluconeogenic (reverse) reactions had relative broad pH optima between pH 6.7 and 8.0. The Fru 2,6-P2 saturation curves were hyperbolic with approximate Ka values of 69 and 82 nm for the forward and reverse reactions, respectively. The enzyme showed hyperbolic saturation curves for all its substrates with Km values comparable with that of other plant PFP, i.e. 150, 37, 39 and 460 µM for fructose 6-phosphate, inorganic pyrophosphate, fructose 1,6-bisphosphate and inorganic phosphate, respectively. Sugarcane PFP’s molecular and kinetic characteristics differed slightly from that of other plant PFP in that: (i) Fru 2,6-P2 directly induced the octameric state from the dimeric state; (ii) Fru 2,6-P2 shifted the pH optimum for the forward reaction to a slightly more basic pH; and (iii) Fru 2,6-P2 increased the Vmax for the forward and reverse reactions by similar amounts.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3