Early effects of water deficit on two parental clones of Populus nigra grown under different environmental conditions

Author:

Cocozza Claudia,Cherubini Paolo,Regier Nicole,Saurer Matthias,Frey Beat,Tognetti Roberto

Abstract

Global climate change is expected to induce a dramatic increase in the frequency and intensity of drought events in the Mediterranean region. Their effects might be particularly severe in short rotation forestry systems, such as poplar plantations, with high water demands. The aim of this study was to examine the clone-specific reaction of plant-water relations and growth to a dry-down cycle in two parental clones of Populus nigra L.: Poli, which is adapted to the dry/hot climatic conditions of southern Italy, and 58–861, which prefers the cooler and moister conditions typical in northern Italy. Plants were grown in controlled conditions in an airconditioned greenhouse, under three different irrigation regimes for 44 days. Drought stress resulted in a general decrease in plant size and predawn water potential in both clones. Although the control trees grew somewhat taller and retained leaves longer than those in other treatments, the two clones responded differently to water stress. Under severe stress conditions, Poli showed proline accumulation in old leaves to preserve plants from drought damage, without reduced stomatal activity, as shown by low values of δ13C. In 58–861, the accumulation of ABA in roots during drought probably stimulated stomatal control, increasing drought avoidance in this drought-sensitive clone. Although in 58–861 the expression of aquaporin genes PIP1–2 and TIP1–3 was enhanced, in Poli gene expression was downregulated. We analysed only part of the aquaporins genes, but we assume that these clones exhibited contrasting water transport strategies during drought. Clone 58–861 seems to increase the permeability of the vascular tissue by overexpressing aquaporin genes, probably in order to facilitate water transport, and Poli appears to increase water conservation in the root cells by downregulating aquaporins.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3