Projecting demands for renal replacement therapy in the Northern Territory: a stochastic Markov model

Author:

You Jiqiong,Zhao Yuejen,Lawton Paul,Guthridge Steven,McDonald Stephen P.,Cass Alan

Abstract

Objective The aim of the present study was to evaluate the potential effects of different health intervention strategies on demand for renal replacement therapy (RRT) services in the Northern Territory (NT). Methods A Markov chain simulation model was developed to estimate demand for haemodialysis (HD) and kidney transplantation (Tx) over the next 10 years, based on RRT registry data between 2002 and 2013. Four policy-relevant scenarios were evaluated: (1) increased Tx; (2) increased self-care dialysis; (3) reduced incidence of end-stage kidney disease (ESKD); and (4) reduced mortality. Results There were 957 new cases of ESKD during the study period, with most patients being Indigenous people (85%). The median age was 50 years at onset and 57 years at death, 12 and 13 years younger respectively than Australian medians. The prevalence of RRT increased 5.6% annually, 20% higher than the national rate (4.7%). If current trends continue (baseline scenario), the demand for facility-based HD (FHD) would approach 100 000 treatments (95% confidence interval 75 000–121 000) in 2023, a 5% annual increase. Increasing Tx (0.3%), increasing self-care (5%) and reducing incidence (5%) each attenuate demand for FHD to ~70 000 annually by 2023. Conclusions The present study demonstrates the effects of changing service patterns to increase Tx, self-care and prevention, all of which will substantially attenuate the growth in FHD requirements in the NT. What is known about the topic? The burden of ESKD is projected to increase in the NT, with demand for FHD doubling every 15 years. Little is known about the potential effect of changes in health policy and clinical practice on demand. What does this paper add? This study assessed the usefulness of a stochastic Markov model to evaluate the effects of potential policy changes on FHD demand. What are the implications for practitioners? The scenarios simulated by the stochastic Markov models suggest that changes in current ESKD management practices would have a large effect on future demand for FHD.

Publisher

CSIRO Publishing

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3