Author:
McLaughlin Mike J.,Whatmuff Mark,Warne Michael,Heemsbergen Diane,Barry Glenn,Bell Mike,Nash David,Pritchard Deb
Abstract
Environmental Context. Cadmium is a potentially toxic metal that is an unwanted contaminant in urban wastewater biosolids, and has the potential to accumulate through the food chain. This study found that the accumulation of cadmium in wheat grain from application of urban biosolids to soils in Australia was less than when cadmium was applied in a water-soluble form. The critical soil cadmium concentration, above which wheat grain would exceed food contaminant limits, could also be simply predicted using soil pH (acidity) and clay content.
Abstract. One of the pathways for transfer of cadmium (Cd) through the food chain is addition of urban wastewater solids (biosolids) to soil, and many countries have restrictions on biosolid use to minimize crop Cd contamination. The basis of these restrictions often lies in laboratory or glasshouse experimentation of soil–plant transfer of Cd, but these studies are confounded by artefacts from growing crops in controlled laboratory conditions. This study examined soil to plant (wheat grain) transfer of Cd under a wide range of field environments under typical agronomic conditions, and compared the solubility and bioavailability of Cd in biosolids to soluble Cd salts. Solubility of biosolid Cd (measured by examining Cd partitioning between soil and soil solution) was found to be equal to or greater than that of soluble Cd salts, possibly due to competing ions added with the biosolids. Conversely, bioavailability of Cd to wheat and transfer to grain was less than that of soluble Cd salts, possibly due to addition of Zn with the biosolids, causing reduced plant uptake or grain loading, or due to complexation of soluble Cd2+ by dissolved organic matter.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献