Effects of dimethyl sulfoxide (DMSO) on DNA methylation and histone modification in parthenogenetically activated porcine embryos

Author:

Cheng Hui,Han Yu,Zhang Jian,Zhang Sheng,Zhai Yanhui,An Xinglan,Li Qi,Duan Jiahui,Zhang Xueming,Li Ziyi,Tang BoORCID,Shen Haiqing

Abstract

Epigenetic mechanisms play an important role in oogenesis and early embryo development in mammals. Dimethyl sulfoxide (DMSO) is frequently used as a solvent in biological studies and as a vehicle for drug therapy. Recent studies suggest that DMSO detrimentally affects porcine embryonic development, yet the mechanism of the process in parthenogenetically activated porcine embryos has not been reported. In this study, we found that treatment of embryos with 1.5% DMSO significantly decreased the cleavage and blastocyst rates, total cell number of blastocysts and the anti-apoptotic gene BCL-2 transcription level; however, the percentage of apoptotic cells and the expression levels of the pro-apoptotic gene BAX were not changed. Treatment with DMSO significantly decreased the expression levels of DNMT1, DNMT3a, DNMT3b, TET1, TET2, TET3, KMT2C, MLL2 and SETD3 in most of the stages of embryonic development and increased 5-mC signals, while the staining intensity for 5-hmC had no change in porcine preimplantation embryos from 2-cell to the blastocyst stages. Meanwhile, DMSO decreased the level of H3K4me3 during the development of parthenogenetically activated porcine embryos. After treatment with DMSO, expression levels of the pluripotency-related genes POU5F1 and NANOG decreased significantly (P < 0.01), whereas the imprinted gene H19 did not change (P > 0.05). In conclusion, these results suggest that DMSO can affect genome-wide DNA methylation and histone modification by regulating the expression of epigenetic modification enzymes, and DMSO also influences the expression level of pluripotent genes. These dysregulations lead to defects in embryonic development.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Reference36 articles.

1. Establishment of DNA methylation patterns of the () gene in porcine embryos and tissues.;Journal of Reproduction and Development,2017

2. Genomic imprinting in mammals.;Cold Spring Harbor Perspectives in Biology,2014

3. Mammalian genomic imprinting.;Cold Spring Harbor Perspectives in Biology,2011

4. Parthenotes as a source of embryonic stem cells.;Cell Proliferation,2008

5. Effects of PRDM14 silencing on parthenogenetically activated porcine embryos.;Cellular Reprogramming,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3