Author:
Chan Eric J.,Cotton Simon A.,Harrowfield Jack M.,Skelton Brian W.,Sobolev Alexandre N.,White Allan H.
Abstract
Reactions of the lanthanide(iii) picrates (picrate=2,4,6-trinitrophenoxide=pic) with 1,10-phenanthroline (phen) and 2,2′:6′,2′′-terpyridine (terpy) in a 1:2 molar ratio have provided crystals suitable for X-ray structure determinations in instances predominantly involving the lighter lanthanides. In all, the aza-aromatic ligands chelate the lanthanide ion, none being found as ‘free’ ligands within the lattice. The complexes of 1,10-phenanthroline have been characterised in two forms, one unsolvated (Ln=La, Sm, Eu; monoclinic, C2/c, Z 8), one an acetonitrile monosolvate (Ln=Gd; monoclinic, P21/a, Z 4), the latter being the only previously known form (with Ln=La). In both forms, the LnIII is nine-coordinate, in an approximately tricapped trigonal-prismatic environment, with two picrate ligands chelating through phenoxide and 2-nitro group oxygen atoms, the third being bound through phenoxide-O only. The 2,2′:6′,2′′-terpyridine complexes, all acetonitrile monosolvates defined for Ln=La, Gd, Er, and Y (monoclinic, C2/c, Z 4), are ionic, one picrate having been displaced from the primary coordination sphere. For Ln=La, the two bound picrates are again chelating, making the LaIII 10-coordinate in a distorted bicapped square-antiprismatic environment but in the other species they are bound through phenoxide-O only, making the LnIII ions eight-coordinate in a distorted square-antiprismatic environment. Stacked arrays of the ligands can be found in both series of complexes, with intramolecular picrate–picrate and picrate–aza-aromatic stacks being prominent features.