Author:
Holtum Joseph A. M.,Winter Klaus
Abstract
Studies of responses of forest vegetation to steadily increasing atmospheric concentrations of CO2 have focussed strongly on the potential of trees to absorb extra carbon; the effects of elevated [CO2] on plant–soil water relations via decreased stomatal conductance and increased ambient temperature have received less attention, but may be significant in the long term at the ecosystem level. CO2 augmentation experiments with young trees demonstrate small increases in aboveground carbon content, but these increases tend to diminish as trees get older. By contrast, several experiments suggest continued decreases in transpiration and increased soil water content under these conditions. In tropical forests, the major cause of increases in aboveground biomass observed in the recent past is not necessarily elevated [CO2]. Undoubtedly, the potential of monitoring trees in forest dynamics plots to deduce CO2-specific alterations in forest structure and standing biomass will unfold in the decades to come. The comprehensive understanding of responses of forest vegetation to elevated [CO2] in the Anthropocene will depend upon the inclusion of detailed measurements of soil water pools and water fluxes through the soil–plant–atmosphere continuum in future tree CO2 augmentation experiments and forest dynamics plot studies.
Subject
Plant Science,Agronomy and Crop Science
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献