Author:
Cheong Judy,Williams Kevin,Wallwork Hugh
Abstract
Barley leaf scald disease, caused by the fungal pathogen Rhynchosporium secalis, can be economically damaging, causing both yield losses and lower quality from reduced grain size. Most genetic studies of scald resistance have concentrated on seedling reactions either because of a lack of access to field screening resources or else because of the more definitive phenotype obtained at the seedling stage. However, understanding the genetics of adult plant resistance (APR) to leaf scald could help to produce more durable resistance to this disease. APR to leaf scald in a Chebec/Harrington population (120 doubled haploid (DH) lines) and a Mundah/Keel population (95 DH lines) was determined at Turretfield, South Australia, in 2004. Two different conditions of scald infection were used for Chebec/Harrington, natural infection and inoculation with 2 known scald isolates, whereas Mundah/Keel was inoculated with 2 known isolates. Quantitative trait loci (QTLs) for scald resistance were identified using a previously published Chebec/Harrington map. Three QTLs (on chromosomes 7HS, 7HL, and 6HS) were identified using the natural infection data and one QTL on chromosome 6HL using the inoculated plant data. Two QTLs were identified on chromosome 3HL and 6HS, respectively, using a partial map of Mundah/Keel. An unmapped Schooner/O’Connor population, consisting of 116 DH lines, was also phenotyped for adult plant resistance to scald using natural infection at Turretfield in 2001. Bulked-segregant analysis was used to identify molecular markers linked to a scald resistance locus in the barley cultivar O’Connor on chromosome 6HS, at the same location as the QTLs identified from Harrington and Keel. Six of the QTLs for APR to leaf scald identified in this study were co-located with previously identified seedling resistance genes.
Subject
General Agricultural and Biological Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献