Nanoformulations can significantly affect pesticide degradation and uptake by earthworms and plants

Author:

Fojtová Dana,Vašíčková Jana,Grillo Renato,Bílková Zuzana,Šimek Zdenek,Neuwirthová Natália,Kah MelanieORCID,Hofman JakubORCID

Abstract

Environmental contextNanopesticides are increasingly being developed for agricultural use, but knowledge concerning their environmental fate and effects is limited. This microcosm study brings new results about soil fate and bioaccumulation of polymeric or lipid nanoparticles carrying chlorpyrifos or tebuconazole. The nanoformulations significantly altered the fate and bioavailability of the pesticides in soil even under the real-world and complex conditions of microcosms. AbstractAn increasing number of nanoformulated pesticides (nanopesticides) have been developed in recent years with the aim to improve pesticide efficiencies and reduce their impact on the environment and human health. However, knowledge about their environmental fate and effects is still very limited. This study compares the soil fate and bioaccumulation of four model nanopesticides (chlorpyrifos and tebuconazole loaded on polymeric and lipid nanocarriers) relative to the conventional formulations and pure active ingredients (all added at 0.5mgkg−1) in microcosms containing earthworms Eisenia fetida and lettuce Lactuca sativa in two soils (LUFA 2.1 and 2.4) over a period of four months. The nanoformulations increased the soil half-life of the pesticides by up to 2 times (e.g. chlorpyrifos with lipid nanocarrier and tebuconazole with polymeric nanocarrier in LUFA 2.1), probably as a direct consequence of the slow release of the pesticide from the nanocarriers. Pesticide bioaccumulation in earthworms was often increased for the nanopesticides probably as a result of their enhanced bioavailability. The nanoformulations were also shown to affect the pesticide bioaccumulation in plants, but trends were inconsistent. Overall, the microcosm results demonstrated that nanoformulations can significantly alter the fate and bioavailability of pesticides. However, generalisations were difficult to make as the impacts depended on the type of nanocarrier, pesticide, soil used and time scale. We believe that our study contributes towards the critical mass of case studies needed to enable a judging of the benefits versus risks of nanopesticides.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3