Grain yield stability of high-yielding barley genotypes under Egyptian conditions for enhancing resilience to climate change

Author:

Mansour Elsayed,Moustafa Ehab S. A.,El-Naggar Nehal Z. A.,Abdelsalam Asmaa,Igartua Ernesto

Abstract

Identifying stable, high-yielding genotypes is essential for food security. This is particularly relevant in the current climate change scenario, which results in increasing occurrence of adverse conditions in the Mediterranean region. The objective of this study was to evaluate stability of barley (Hordeum vulgare L.) grain yield, and its relationship to the duration of the growth cycle and its stability under Mediterranean conditions in Egypt. Nineteen genotypes were evaluated during three growing seasons (2013–14 to 2015–16) at two locations (Elkhatara, Ghazala) and two growing seasons (2014–15 and 2015–16) at a third location (Ras-Sudr), i.e. eight environments (location–year combinations) in total. The linear regression explained a significant 48.2% and 22.8% of GEI variation for days to heading and grain yield, respectively, and the genotypic linear slopes were highly related to the first principal component of the AMMI model. Although all genotypes were well adapted to the region, there were different GEI responses, with changes in ranking across locations. Some stable and broadly adapted genotypes were identified, as well as unstable genotypes with specific adaptations. High yields across environments were attained by very stable (G4, G5), intermediate and stable (G1, G9) and highly responsive (G18, G19) genotypes. In general, responsiveness (b values) of yield and days to heading were negatively correlated, and high yielding genotypes showed different patterns of responses of days to heading. Genotypes G1, G4, G5 and G9 seemed best adapted overall, with longer season genotypes (e.g. G18 and G19) offering prospects to explore other formats of varieties in breeding, particularly for situations of climate instability.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3