Forest patch modeling: using high performance computing to simulate aboveground interactions among individual trees

Author:

Host George E.,Stech Harlan W.,Lenz Kathryn E.,Roskoski Kyle,Mather Richard

Abstract

Functional–structural plant models (FSPMs) typically integrate suites of detailed physiological and phenological processes to simulate the growth of individual plants. Recent advances in high-performance computing have allowed FSPMs to be extended to patches of interacting trees. Here, we describe a parallel modelling strategy to run simultaneous individual tree models across an 8 × 8 patch of trees. The 64 ‘core’ trees are surrounded by multiple rings of neighbour trees to remove edge effects. A sensitivity analysis of the patch model demonstrates that computational factors such as the number of independently simulated trees (9 v. 36) or number of neighbour rings (3 v. 6) did not significantly influence model estimates of tree volume growth. Updated submodels for phenology and redistribution of overwinter carbohydrate storage allow the simulation to be more responsive to above ground competition among trees in a patch over multiple growing seasons. An 8-year patch-scale simulation of aspen clones 216 and 259 was conducted using high-resolution environmental data from the Aspen FACE Experiment, a long-term free-air carbon dioxide enrichment (FACE) study. Tree heights and volumes were comparable to 8-year growth measurements made at the Aspen FACE site.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3