Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: examining correlation between specific trihalomethane formation potential and specific ultraviolet absorbance

Author:

Abouleish Mohamed Y. Z.,Wells Martha J. M.

Abstract

Environmental context When surface water is disinfected to produce potable drinking water, toxic by-products are generated by reaction with naturally occurring organic matter. The production of trihalomethane disinfection by-products was investigated for different types of well-characterised organic matter from various geographic locations. Increased understanding of the character of organic matter dissolved in water is needed for improving the ability to provide safe water and protect public health. Abstract Trihalomethanes (THMs) – a class of disinfection by-products (DBPs) including chloroform – are produced when natural water is chlorinated. Many THMs are believed to result from the reaction of chlorine with the aromatic structures in humic substances, which can be represented by ultraviolet absorbance at 254 nm (UVA). However, in the literature, plots of the specific, or carbon-normalised, UVA (SUVA) compared with the specific, or carbon-normalised, trihalomethane formation potential, THMFP (STHMFP) are poorly correlated. Therefore, well characterised samples of organic matter were obtained from the International Humic Substances Society (IHSS) to study the effect of type (fulvic acid, FA; humic acid, HA), origin (aquatic, terrestrial), geographical source (Nordic, Suwannee River, peat, soil) and pH (6, 9) on the formation of trihalomethanes. In this research, parameters expressed on a weight-average moles-of-humic substance basis were compared with those on a mass-of-carbon basis. Using factorial analysis, SUVA was statistically described by the main effect type (P = 0.0044), whereas STHMFP was statistically described by the main effects type (P = 0.0078) and origin (P = 0.0210). Separate relationships between SUVA and STHMFP normalised to moles of humic substance were defined for aquatic substances (R2 = 0.9948) and for terrestrial substances (R2 = 0.9512). The occurrence of aquatically derived fulvic-like humic acid (Suwannee River humic acid) and aquatically derived terrestrial-like humic acid (Nordic humic acid) were observed. Some aquatic substances were capable of generating levels of THMs per mole of humic substance that were greater than or equal to the most reactive terrestrial humic acid.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3