Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis

Author:

Acosta-Gamboa Lucia M.,Liu Suxing,Langley Erin,Campbell Zachary,Castro-Guerrero Norma,Mendoza-Cozatl David,Lorence Argelia

Abstract

Food security is currently one of the major challenges that we are facing as a species. Understanding plant responses and adaptations to limited water availability is key to maintain or improve crop yield, and this is even more critical considering the different projections of climate change. In this work, we combined two high-throughput -‘omic’ platforms (‘phenomics’ and ‘ionomics’) to begin dissecting time-dependent effects of water limitation in Arabidopsis leaves and ultimately seed yield. As proof of concept, we acquired high-resolution images with visible, fluorescence, and near infrared cameras and used commercial and open source algorithms to extract the information contained in those images. At a defined point, samples were also taken for elemental profiling. Our results show that growth, biomass and photosynthetic efficiency were affected mostly under severe water limitation regimes and these differences were exacerbated at later developmental stages. The elemental composition and seed yield, however, changed across the different water regimes tested and these changes included under- and over- accumulation of elements compared with well-watered plants. Our results demonstrate that the combination of phenotyping techniques can be successfully used to identify specific bottlenecks during plant development that could compromise biomass, yield, and the nutritional quality of plants.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3