Translational research in agriculture. Can we do it better?

Author:

Passioura John B.ORCID

Abstract

‘Translational research’ became an increasingly common term when it was realised that much agriculturally inspired basic research failed to contribute to the improvement of crops. Most of the failure has come from laboratory-based attempts to ameliorate abiotic stresses. Dealing with biotic stress has been much more successful; the control of pests and weeds is often enabled by transforming crops with single genes, for such genes have little or no influence on a crop’s metabolism. By contrast, abiotic stress varies with the weather; i.e. crops respond systemically, over a range of levels of organisation (e.g. cells, tissues, organs), with many feedbacks and feedforwards. Drought is the most pervasive form of abiotic stress. There are 4600 papers that have searched, ineffectively, for ‘drought resistance’, a term that usually defies useful definition. By contrast, dealing with a measured, limited water supply (e.g. seasonal rainfall), rather than with ‘drought’, has effectively increased water-limited yield through agronomic innovation based on improving water-use efficiency. ‘Salt tolerance’ has similar difficulties; nevertheless, physiological knowledge has revealed effective single genes, in contrast to the failures of empirical gene prospecting. Another important goal has been to increase potential crop yield by exploring mechanistic opportunities to improve photosynthetic efficiency. These attempts have not, so far, succeeded, perhaps because they have rarely broached physiological responses beyond carbon balance, such as metabolic responses to environmental challenges that may affect meristematic development. A major reason for the predominant failure of translational research from laboratory to field is that the peer-review system is too narrow; i.e. reviewers have the same backgrounds as the authors. Effective translation will require the addition of reviewers who can assess the pathway from laboratory to field.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3