Productivity, sustainability, and rainfall-use efficiency in Australian rainfed Mediterranean agricultural systems

Author:

Turner Neil C.,Asseng Senthold

Abstract

Mediterranean environments are characterised by hot, dry summers and cool, wet winters. The native vegetation in Mediterranean-climatic regions is predominantly perennial shrubs and trees intermixed with annual forbs. In south-western Australia, the spread of agriculture has seen the well adapted perennial vegetation replaced by rainfed annual crops and pastures. This has increased waterlogging and secondary salinity, thereby causing loss of productivity in ~10% of the cleared land area. To reduce deep drainage and make the agricultural systems environmentally sustainable requires the re-introduction of perennial vegetation in the form of belts of trees or shrubs, and phase-farming systems with perennials such as lucerne replacing annual pastures between the cropping years. To be economically viable, agricultural productivity needs to increase by at least 3% per annum. Yields of dryland wheat, the predominant crop in the Mediterranean agricultural regions of Australia, have increased at ~1%/year for the century preceding the 1980s and since then by nearly 4%/year. Increases have arisen from both genotypic and agronomic improvements. Genotypic increases have arisen from selection for earliness, early vigour, deep roots, osmotic adjustment, increased transpiration efficiency, improved disease resistance, and an improved harvest index from high ear weight (grain number) at flowering and high assimilate storage and remobilisation. Agronomic increases have arisen from early sowing that has been enabled by minimum tillage, increased fertiliser use, especially nitrogen, weed control, and rotations to improve weed control, minimise disease risk, and increase nitrogen availability. Evidence is presented suggesting that the rapid increase in yield of wheat in the last two decades has likely arisen from the rapid adoption of new technologies. For productivity to be maintained in the face of the increasing requirement to be environmentally sustainable will be a challenge and will require better integration of breeding and agronomy.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3