Author:
Bossa Jean-Baptiste,Borget Fabien,Duvernay Fabrice,Danger Grégoire,Theulé Patrice,Chiavassa Thierry
Abstract
Solid-phase methylamine (CH3NH2) was vacuum ultraviolet (VUV) photoprocessed at low temperature (20 K) using a hydrogen flow discharge lamp, which allows irradiation down to 120 nm. Methanimine (CH2=NH), the methylammonium cation (CH3NH3+) and the counterion CN–, as well as the amino radical (NH2), methane (CH4) and ammonia (NH3), were identified as the photoproducts by using FTIR spectroscopy. So far, the branching ratios of the photodissociation pathways of methylamine in the solid phase remain unknown. The methylamine molecule holds two non-equivalent hydrogen atoms on the methyl and the amino group, so we can expect the formation of two distinct radicals via a carbon–hydrogen or a nitrogen–hydrogen bond cleavage, namely CH2NH2 and CH3NH. These radicals are highly reactive and may reform methylamine with hydrogen atom recombination. Their direct infrared spectroscopic detection is therefore tricky. To solve that problem, we use carbon monoxide (CO) as an H radical scavenger, forming the intermediate species HCO. After the irradiation of a CH3NH2 : CO binary ice mixture, formamide (NH2CHO) and N-methylformamide (CH3NHCHO) were identified as the main photoproducts using both infrared and mass spectrometry. We give a rough approximation of the branching ratios, which are in agreement with previous studies in the gas phase.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献