Seed-germination ecology of glyphosate-resistant and glyphosate-susceptible biotypes of Echinochloa colona in Australia

Author:

Mutti Navneet Kaur,Mahajan GulshanORCID,Chauhan Bhagirath Singh

Abstract

Echinochloa colona L. (Link) (awnless barnyard grass) is one of the top three most problematic weeds of summer crops in Australia. This weed has evolved resistance to glyphosate. A study was conducted to evaluate the effect of environmental factors on the germination and seedling emergence of a glyphosate-resistant (GR) and a glyphosate-susceptible (GS) biotype of E. colona. The two biotypes had similar germination and emergence responses to light and temperature conditions, water stress, solution pH, sorghum residue cover and seed burial depth. Light stimulated germination more than dark conditions, and seeds germinated at a wide range of alternating day/night temperatures, from 20°C/10°C to 35°C/25°C, whereas no seeds germinated at 15°C/5°C. These results suggest that E. colona can emerge in spring, summer and autumn in Queensland. The sodium chloride concentration required to inhibit 50% germination was greater for the GR biotype (209 mm) than the GS biotype (174 mm). Seed germination was not affected by pH in the range 4–10. Water stress reduced germination by 50% at an osmotic potential of –0.44 MPa. In a shade-house study, retention of sorghum residue cover on the soil surface reduced the seedling emergence of E. colona. Emergence was 70% in the absence of crop residue, whereas a residue amount of 8 t ha–1 reduced emergence to 47%. Emergence was greatest for seeds placed on the soil surface and declined linearly with increasing burial depth; no seedlings emerged from 8 cm depth. The GR biotype had higher germination than the GS biotype under high sodium chloride concentrations; therefore, this biotype may be highly competitive with crops under highly saline conditions. Because germination was high on the soil surface and was stimulated by light, this weed will remain problematic under no-till farming systems in Australia.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3