The relationship between physiological stress and wildlife disease: consequences for health and conservation

Author:

Hing Stephanie,Narayan Edward J.,Thompson R. C. Andrew,Godfrey Stephanie S.

Abstract

Wildlife populations are under increasing pressure from a variety of threatening processes, ranging from climate change to habitat loss, that can incite a physiological stress response. The stress response influences immune function, with potential consequences for patterns of infection and transmission of disease among and within wildlife, domesticated animals and humans. This is concerning because stress may exacerbate the impact of disease on species vulnerable to extinction, with consequences for biodiversity conservation globally. Furthermore, stress may shape the role of wildlife in the spread of emerging infectious diseases (EID) such as Hendra virus (HeV) and Ebola virus. However, we still have a limited understanding of the influence of physiological stress on infectious disease in wildlife. We highlight key reasons why an improved understanding of the relationship between stress and wildlife disease could benefit conservation, and animal and public health, and discuss approaches for future investigation. In particular, we recommend that increased attention be given to the influence of anthropogenic stressors including climate change, habitat loss and management interventions on disease dynamics in wildlife populations.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3