Online analysis of secondary organic aerosols from OH-initiated photooxidation and ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene by thermal desorption–photoionisation aerosol mass spectrometry

Author:

Fang Wenzheng,Gong Lei,Sheng Liusi

Abstract

Environmental contextSecondary organic aerosol, formed by oxidation of volatile precursors such as monoterpenes, is a major contributor to the total atmospheric organic aerosol. We focus on the online mass spectrometric analysis of the aerosol generated by oxidation products of four major monoterpenes in an environmental chamber. Numerous important monoterpene oxidation products were clearly observed and provided a direct comparison of the formation of biogenic secondary organic aerosols. AbstractWe present here thermal desorption–tunable vacuum ultraviolet time-of-flight photoionisation aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for online analysis of biogenic secondary organic aerosols (BSOAs) formed from OH-initiated photooxidation and dark ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene in smog chamber experiments. The ‘soft’ ionisation at near-threshold photon energies (≤10.5eV) used in this study permits direct measurement of the fairly clean mass spectra, facilitating molecular identification. The online BSOA mass spectra compared well with previous offline measurements and most of the important monoterpene oxidation products were clearly found in the online mass spectra. Oxidation products such as monoterpene-derived acids (e.g. pinic acid, pinonic acid, 3-caronic acid, limononic acid, limonalic acid), ketones (e.g. norpinone, limonaketone), aldehydes (e.g. caronaldehyde, norcaronaldehyde, limononaldehyde) and multifunctional organics (e.g. hydroxypinonaldehydes, hydroxy-3-caronic aldehydes, hydroxylimononic acid) were tentatively identified. The online TD-VUV-TOF-PIAMS mass spectra showed that the OH-initiated photooxidation and ozonolysis of the same monoterpenes produced some similar BSOA products; for example, 3-caric acid, 3-caronic acid, 3-norcaronic acid, 3-norcaralic acid, caronaldehyde and norcaronaldehyde were observed in both photooxidation and ozonolysis of Δ3-carene. However, they could be formed through different pathways. Some of the same products and isomers (e.g. 10-oxopinonic acid, pinonic acid, norpinic acid, hydroxyl pinonaldehyde, norpinonic acid, norpinone) were formed during the photooxidation and ozonolysis of α-pinene and β-pinene. However, several different BSOA products were generated in these photooxidation and ozonolysis reactions due to their different parent structures. The OH–monoterpene reaction generated higher-molecular-weight products than O3–monoterpene owing to multiple OH additions to the unsaturated carbon bond. The online observation of key BSOA products provided a direct comparison of BSOA formation among different monoterpenes and insights into the formation pathways in the OH-initiated photooxidation and ozonolysis of monoterpenes.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3