Author:
G. Ramesh Kumar,Mishra Ashish,Reddy I. J.,Dhali Arindam,Roy Sudhir C.
Abstract
Context Oxygen (O2) is one of the most powerful regulators of embryo function. Nevertheless, most in vitro embryo production studies do not consider O2 as a determining factor. Aim The present study was designed to assess the effect of different O2 (5 and 20%) concentrations on the developmental ability and expression of genes related to cellular antioxidant functions and glucose metabolism in the in vitro produced ovine embryos. Methods In vitro sheep embryos were produced at different O2 (5 and 20%) concentrations as per the laboratory protocol. Developmental stages of embryos at different O2 concentrations were compared. Messenger RNA abundance of antioxidant and glucose metabolism genes in embryos produced at different O2 concentrations were compared. Key results No significant (P < 0.05) effect of different O2 concentrations on oocyte maturation and cleavage rate was observed. In contrast, significantly (P < 0.05) more number of morula and blastocysts were observed at 5 compared with 20%O2. The expression level of the genes related to antioxidant functions (GPX, SOD1, SOD2 and CAT) and glucose metabolism (G6PD and HPRT) were found significantly (P < 0.05) greater in the embryos generated with 5 compared with 20% O2. In contrast, the expression of GAPDH did not differ significantly (P < 0.05) between the groups. Conclusions Ovine embryos at 5%O2 generated low ROS and synthesised more GSH due to the activation of G6PD and GPX that in turn increased the antioxidant capability and developmental potential of the embryos. Implications Embryos at higher O2 concentration (20%) generated more reactive oxygen species (ROS) that caused oxidative damage to the embryos and in turn reduced their developmental ability and alter gene expression.
Subject
Animal Science and Zoology,Food Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献