Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO2

Author:

Rakocevic MiroslavaORCID,Batista Eunice R.,Pazianotto Ricardo A. A.,Scholz Maria B. S.,Souza Guilherme A. R.,Campostrini Eliemar,Ramalho José C.

Abstract

Leaves in different positions respond differently to dynamic fluctuations in light availability, temperature and to multiple environmental stresses. The current hypothesis states that elevated atmospheric CO2 (e[CO2]) can compensate for the negative effects of water scarcity regarding leaf gas exchanges and coffee bean quality traits over the canopy vertical profile, in interactions with light and temperature microclimate during the two final stages of berry development. Responses of Coffea arabica L. were observed in the 5th year of a free air CO2 enrichment experiment (FACE) under water-limited rainfed conditions. The light dependent leaf photosynthesis curves (A/PAR) were modelled for leaves sampled from vertical profile divided into four 50-cm thick layers. e[CO2] significantly increased gross photosynthesis (AmaxGross), the apparent quantum yield efficiency, light compensation point, light saturation point (LSP) and dark respiration rate (Rd). As a specific stage response, considering berry ripening, all parameters calculated from A/PAR were insensitive to leaf position over the vertical profile. Lack of a progressive increase in AmaxGross and LSP was observed over the whole canopy profile in both stages, especially in the two lowest layers, indicating leaf plasticity to light. Negative correlation of Rd to leaf temperature (TL) was observed under e[CO2] in both stages. Under e[CO2], stomatal conductance was also negatively correlated with TL, reducing leaf transpiration and Rd even with increasing TL. This indicated coffee leaf acclimation to elevated temperatures under e[CO2] and water restriction. The e[CO2] attenuation occurred under water restriction, especially in A and water use efficiency, in both stages, with the exception of the lowest two layers. Under e[CO2], coffee produced berries in moderate- and high light level layers, with homogeneous distribution among them, contrasted to the heterogeneous distribution under actual CO2. e[CO2] led to increased caffeine content in the highest layer, with reduction of chlorogenic acid and lipids under moderate light and to raised levels of sugar in the shaded low layer. The ability of coffee to respond to e[CO2] under limited soil water was expressed through the integrated individual leaf capacities to use the available light and water, resulting in final plant investments in new reproductive structures in moderate and high light level layers.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3