In situ characterisation of physicochemical state and concentration of nanoparticles in soil ecotoxicity studies using environmental scanning electron microscopy

Author:

Tuoriniemi Jani,Gustafsson Stefan,Olsson Eva,Hassellöv Martin

Abstract

Environmental context Characterisation of nanoparticles in terms of number concentration and aggregation state is essential for interpreting data from toxicological tests. These parameters have never been measured in situ in tests carried out in soil matrices. Here, environmental scanning electron microscopy imaging is evaluated for particles in soil, and a method for determining the number concentrations by counting the particles in the images is developed. Abstract The interpretation of nanoparticle toxicity data in soils is currently impeded by the lack of methods capable of characterising particles in situ. To draw relevant and accurate conclusions it would be desirable to characterise particle sizes, agglomeration state and number concentrations. In this article, methodologies for imaging nanoparticles in soils are evaluated for conventional scanning electron microscopy (SEM) and environmental or variable pressure scanning electron microscopy (ESEM). A protocol for dispersing Au particles (~25 to ~450nm) into soil without causing aggregation was developed. The number of particles observed per imaged area of soil correlated linearly with concentration. To determine the number of particles per volume of soil it was also necessary to know how deep in the sample the particles can be visualised. The depth was estimated by both using the Kanaya Okayama model, and spiking the soil with dispersions of known number concentration. These concentrations were determined with a range of methods to ensure their accuracy. Because larger particles can be detected deeper in the matrix, such a calibration should be performed over a range of particle sizes.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3