White clover or nitrogen fertiliser for dairying under nitrate leaching limits?

Author:

Chapman David,Pinxterhuis Ina,Ledgard Stewart,Parsons Tony

Abstract

As the pressure intensifies to reduce nitrogen (N) losses to the environment from pasture-based dairy systems, interest in reducing N-fertiliser inputs and returning to grass–clover mixtures, where more N for pasture growth is supplied by biological N fixation (BNF), have been revived. However, the following question then arises: is BNF fundamentally different from fertiliser N with respect to N losses, especially nitrate-N leaching risk? The present paper addresses this question by reviewing empirical evidence in the context of N-cycling processes and the efficiency of N use for herbage production. Nitrate leaching data from studies comparing different sward treatments at the same level of total N inputs (fertiliser plus BNF) provide no evidence to suggest that leaching differs when N is supplied solely by fixation in mixtures, by fixation plus fertiliser in mixtures, or solely as a fertiliser to grass monoculture. Increasing clover content in mixed grass–clover pastures is likely to increase N leaching due to a lower ratio of soluble sugar and starch to N in herbage than the common companion grass species perennial ryegrass, and, therefore, a higher partitioning of N eaten to urine. Counteracting this effect, mixed grass–clover pastures may offer some potential for increasing N-use efficiency and reducing the whole-farm N surplus compared with grass-dominant pasture receiving high rates of N fertiliser. While there are undeniable benefits for the productivity of dairy systems from maintaining strong grass–clover mixtures, it is the total amount of N entering the system, rather than the form of N (BNF or fertiliser), that influences nitrate leaching rates.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3