Determination of ewe behaviour around lambing time and prediction of parturition 7 days prior to lambing by tri-axial accelerometer sensors in an extensive farming system

Author:

Sohi RajneetORCID,Almasi FazelORCID,Nguyen Hien,Carroll Alexandra,Trompf Jason,Weerasinghe Maneka,Bervan Aidin,Godoy Boris I.,Ahmed Awais,Stear Michael J.ORCID,Desai Aniruddha,Jois MarkandeyaORCID

Abstract

Context Lamb loss and dyctocia are two major challenges in extensive farming systems. While visual observation can be impractical due to the large sizes of paddocks, number of animals and high labour cost, wearable sensors can be used to monitor the behaviour of ewes as there might be changes in their activities prior to lambing. This provides sufficient time for the farm manager to nurse those ewes that are at risk of dyctocia. Aim The objective of this study was to determine whether the behaviour of a pregnant ewe could predict the time of parturition. Methods Two separate trials were conducted: the first trial (T1), with 32 ewes, included human/video observations, and the second trial (T2), with 165 ewes, conducted with no humans present, to emulate real extensive farming settings. The ewes were fitted with tri-axial accelerometer sensors by means of halters. Three-dimensional movement data were collected for a period of at least 7 and 14 days in T1 and T2 respectively. The sensor units were retrieved, and their data downloaded using ActiGraph software. Ewe behaviour was determined through support vector machine learning (SVM) algorithm, including licking, grazing, rumination, walking, and idling. The behaviours of ewes predicted by analysis of sensor data were compared with behaviours determined using visual observation (video recordings), with time synchronisation to validate the results. Deep learning and neural-network algorithms were used to predict lambing time. Key results The concordance percentages between visual observation and sensor data were 90 ± 11, 81 ± 15, 95 ± 10, 96 ± 6, and 93 ± 8% ± s.d. for grazing, licking, rumination, idling, and walking respectively. The deep-learning model predicted the time of lambing with 90% confidence via a quantile regression method, which can be interpereted as 90% prediction intervals, and shows that the time of lambing can be predicted with reasonable confidence approximately 240 h before the actual lambing events. Conclusion It was possible to predict the time of parturition up to 10 days before lambing. Implications The behaviour of ewes around lambing time has a direct effect on the survival of the lambs and therefore plays an important part in animal management. This knowledge could improve the productivity of sheep and considerably decrease lamb mortality rates.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3