Intraspecific variation in leaf growth of wheat (Triticum aestivum) under Australian Grain Free Air CO2 Enrichment (AGFACE): is it regulated through carbon and/or nitrogen supply?

Author:

Thilakarathne Chamindathee L.,Tausz-Posch Sabine,Cane Karen,Norton Robert M.,Fitzgerald Glenn J.,Tausz Michael,Seneweera Saman

Abstract

Underlying physiological mechanisms of intraspecific variation in growth response to elevated CO2 concentration [CO2] were investigated using two spring wheat (Triticum aestivum L.) cultivars: Yitpi and H45. Leaf blade elongation rate (LER), leaf carbon (C), nitrogen (N) in the expanding leaf blade (ELB, sink) and photosynthesis (A) and C and N status in the last fully expanded leaf blade (LFELB, source) were measured. Plants were grown at ambient [CO2] (~384µmolmol–1) and elevated [CO2] (~550µmolmol–1) in the Australian Grains Free Air CO2 Enrichment facility. Elevated [CO2] increased leaf area and total dry mass production, respectively, by 42 and 53% for Yitpi compared with 2 and 13% for H45. Elevated [CO2] also stimulated the LER by 36% for Yitpi compared with 5% for H45. Yitpi showed a 99% increase in A at elevated [CO2] but no A stimulation was found for H45. There was a strong correlation (r2=0.807) between LER of the ELB and soluble carbohydrate concentration in LFELB. In ELB, the highest spatial N concentration was observed in the cell division zone, where N concentrations were 67.3 and 60.6mg g–1 for Yitpi compared with 51.1 and 39.2mg g–1 for H45 at ambient and elevated [CO2]. In contrast, C concentration increased only in the cell division and cell expansion zone of the ELB of Yitpi. These findings suggest that C supply from the source (LFELB) is cultivar dependent and well correlated with LER, leaf area expansion and whole-plant growth response to elevated [CO2].

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3